Search results for "Dual labeling"

showing 2 items of 2 documents

Chemoselective Dual Labeling of Native and Recombinant Proteins

2017

The attachment of two different functionalities in a site-selective fashion represents a great challenge in protein chemistry. We report site specific dual functionalizations of peptides and proteins capitalizing on reactivity differences of cysteines in their free (thiol) and protected, oxidized (disulfide) forms. The dual functionalization of interleukin 2 and EYFP proceeded with no loss of bioactivity in a stepwise fashion applying maleimide and disulfide rebridging allyl-sulfone groups. In order to ensure broader applicability of the functionalization strategy, a novel, short peptide sequence that introduces a disulfide bridge was designed and site-selective dual labeling in the presenc…

0301 basic medicineModels MolecularBiomedical EngineeringPharmaceutical ScienceBioengineering010402 general chemistry01 natural scienceslaw.inventionCell LineMaleimides03 medical and health scienceschemistry.chemical_compoundMiceBacterial ProteinslawAnimalsHumansReactivity (chemistry)CysteineSulfhydryl CompoundsSulfonesMaleimidePeptide sequenceDual labelingPharmacologychemistry.chemical_classificationStaining and LabelingCommunicationOrganic ChemistryDisulfide bondProteinsCombinatorial chemistryRecombinant Proteins0104 chemical sciencesAllyl CompoundsLuminescent Proteins030104 developmental biologychemistryThiolRecombinant DNASurface modificationInterleukin-2PeptidesBiotechnologyBioconjugate Chemistry
researchProduct

Site-Specific Dual Labeling of Proteins on Cysteine Residues with Chlorotetrazines

2018

International audience; Dual-labeled biomolecules constitute a new generation of bioconjugates with promising applications in therapy and diagnosis. Unfortunately, the development of these new families of biologics is hampered by the technical difficulties associated with their construction. In particular, the site specificity of the conjugation is critical as the number and position of payloads can have a dramatic impact on the pharmacokinetics of the bioconjugate. Herein, we introduce dichlorotetrazine as a trivalent platform for the selective double modification of proteins on cysteine residues. This strategy is applied to the dual labeling of albumin with a macrocyclic chelator for nucl…

Fluorescence-lifetime imaging microscopyTetrazolesbioconjugation010402 general chemistry01 natural sciencesCatalysisMicesite-specific labelingAnimalsHumans[CHIM]Chemical SciencesTissue DistributionAmino Acid SequenceAminescysteineSerum AlbuminDual labelingFluorescent Dyeschemistry.chemical_classificationBioconjugation010405 organic chemistryBiomoleculeOptical Imagingprotein engineeringGeneral MedicineGeneral ChemistryProtein engineeringFluorescence0104 chemical scienceschemistryBiochemistryclick chemistryClick chemistryPeptidesCysteine
researchProduct